APPLICATION OF FIELD PORTABLE XRF GEOCHEMICAL DATA IN THE BROKEN HILL REGION

Adam R. McKinnon Kimberley Metals Ltd (ex. CBH Resources Ltd)

HANDHELD XRF USERS WORKSHOP & DISCUSSION FORUM

Outline of Presentation

- Field portable XRF (FP-XRF) data coverage in the Broken Hill region
- Utilisation of FP-XRF surveys in CBH Resources' Regional Assessment Program
- Data collection and quality
- Comparison of FP-XRF with conventional soil analyses
- Selected statistical features of the FP-XRF dataset
- Data treatment and presentation
- Major regional scale features of the CBH dataset
- Potential further work with the FP-XRF datasets

FP-XRF in the Broken Hill Region

- FP-XRF geochemical data has been extensively collected in the region, most notably by Perilya Ltd. and CBH Resources Ltd. (along with their JV partners)
- Abundant outcrop renders the technique particularly useful in the Broken Hill region
- The FP-XRF geochemical datasets of Perilya and CBH Resources were released as a part of BHEI 2009
 - The combined datasets contain more than 195,000 individual FP-XRF readings
 - Provides coverage to more than 450 km² of prospective ground surrounding Broken Hill

Why Use FP-XRF Geochemistry in the Broken Hill Region?

BENEFITS

Extensive outcrop makes the technique suitable

Rapid coverage of large areas

- Assay of a large element suite (up to 19 elements)
- Immediate display of results
- Lower cost than conventional soil geochemistry
- Rapid delineation of drill targets

ISSUES

- Higher detection limits than conventional soil geochemistry
- Not sensitive enough to detect some pathfinder elements
- Limited control on assay medium/soil size fraction
- Reliability can be affected by high temperatures
- Detection of anthropogenic contamination an issue

The CBH Resources Dataset

- Survey conducted on a nominal grid of 40 x 400 metres, closer infill sampling over many areas (down to 10x10m)
- Readings collected on surface component of soil only
- Reading collection time of 60 seconds per sample
- Up to 19 elements assayed at each point including Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Rb, Sb, Se, Sn, Sr, Zn and Zr
- Best response obtained for Zn, Pb, As, Cu, Mn, Fe, Rb and Sr
- Instrument regularly checked against a range of standards

FP-XRF Sample Density

	Mean	Median	90 th %	99 th %	LLD (SRM)*
Ag	1.8	1.5	10.6	20.2	70
As	7.4	5.3	14.1	44.6	20
Cd	-6.2	-7.3	8.1	27.4	75
Со	68.4	59.0	196.6	445.5	200
Cr	59.2	56.1	142.3	230.7	60
Cu	39.1	32.1	55.6	125.6	100
Fe	29323	28022	39049	65878	250
Hg	2.2	2.1	5.5	8.8	20
Mn	601.4	520.6	909.6	1880.2	250
Ni	42.7	41.4	65.6	92.6	120
Pb	80.8	57.0	116.2	350.5	25
Rb	100.1	99.0	132.3	166.4	20
Sb	7.9	4.9	56.6	118.3	250
Se	1.2	1.1	3.7	6.2	20
Sn	-14.1	-16.4	29.4	82.6	200
Sr	77.7	74.3	101.8	157.0	50
Zn	119.2	92.2	176.4	547.3	55

All values in parts per million *Quoted Lower Limit of Detection for a Standard Reference Material

Data Quality – Use of Standards

Data Quality – Variability Over Time

Apollyon Valley Traverse - 6,482,800 N

Apollyon Valley Traverse - 6,486,000 N

Data Quality – Comparison with Conventional Soil Geochemistry

FP-XRF Pb + Soil Geochem. maille faith faith and fai afetten farren titter ffeltte fare erre feltre farren tittt i til att titte teltt i teleft

Statistical Analysis - Stratigraphy

	Pb	Zn	Cu	As	Mn	n
Pb Bijerkerno Metasediments	47	84	33	6.8	420	1201
Pc Cartwright's Ck Metasediments	56	94	41	10.2	446	1164
S Sundown Group	60	99	39	5.6	543	11017
Bh Hores Gneiss	80	117	39	5.3	647	2974
Bk Silver King Formation	58	134	84	10	741	834
Bf Freyers Metasediments	75	118	40	6.3	596	10167
Bp Parnell Formation	74	120	40	5.6	633	13927
Bs Purnamoota Subgroup	61	116	46	6.0	614	4899
Ba Allendale Metasediments	58	100	35	5.4	493	19167
Be Ettlewood Calc-Silicate	70	165	54	9.0	503	423
Tr Rasp Ridge Gneiss	64	107	41	4.2	563	1893
Th Himalaya Formation	45	78	30	3.8	410	4324
Tc Cues Formation	63	103	41	5.2	539	10773
Tt Alders Tank Formation	51	81	36	3.5	445	317
T Thackaringa Group	45	77	34	5.8	405	1213
Ta Alma Gneiss	57	95	39	3.3	441	2702
rm Retrograde micaceous schist	56	96	36	5.9	495	4171
All Samples	61	103	38	5.4	531	96113

Data presented are median values for each stratigraphic unit. Each point was assigned from the Broken Hill 1:100000 Stratigraphic Sheet

Statistical Analysis - Stratigraphy

	Pb	Zn	Cu	As	Mn	n
Pb Bijerkerno Metasediments	47	84	33	6.8	420	1201
Pc Cartwright's Ck Metasediments	56	94	41	10.2	446	1164
S Sundown Group	60	99	39	5.6	543	11017
Bh Hores Gneiss	80	117	39	5.3	647	2974
Bk Silver King Formation	58	134	84	10.0	741	834
Bf Freyers Metasediments	75	118	40	6.3	596	10167
Bp Parnell Formation	74	120	40	5.6	633	13927
Bs Purnamoota Subgroup	61	116	46	6.0	614	4899
Ba Allendale Metasediments	58	100	35	5.4	493	19167
Be Ettlewood Calc-Silicate	70	165	54	9.0	503	423
Tr Rasp Ridge Gneiss	64	107	41	4.2	563	1893
Th Himalaya Formation	45	78	30	3.8	410	4324
Tc Cues Formation	63	103	41	5.2	539	10773
Tt Alders Tank Formation	51	81	36	3.5	445	317
T Thackaringa Group	45	77	34	5.8	405	1213
Ta Alma Gneiss	57	95	39	3.3	441	2702
rm Retrograde micaceous schist	56	96	36	5.9	495	4171
All Samples	61	103	38	5.4	531	96113

Data presented are median values for each stratigraphic unit. Each point was assigned from the Broken Hill 1:100000 Stratigraphic Sheet

Statistical Analysis – Rock Types

Simplified Rock Type Groups

S	Psammite-rich units
M	Psammopelite-rich units
Е	Pelite-rich units
SM	Psammite & psammopelite-rich units
SE	Psammite & pelite-rich units
EM	Psammopelite & pelite-rich units
F	Composite gneiss and migmatite
в	Quartzo-feldspathic gneisses
р	Pegmatite
L	Feldspar & quartz-rich rocks +/- pegmatite
PI	Plagioclase & quartz-rich rocks
a	Amphibolites and basic granulites
с	Calc-silicate rocks
q	Massive quartz and/or quartz-rich rocks
qg	Quartz-gahnite rocks
gq	Garnet-rich rocks
t	Tourmaline-rich rocks
r	Retrograde rocks and/or schists
rm	Retrograde micaceous schists
G	Post folding granite intrusives
Cz	Cenozoic cover

Statistical Analysis – Rock Types

		Pb	As	Zn	Cu	Mn	Fe%	n
S	Psammite-rich units	70	6.5	117	46	513	2.80	1222
Μ	Psammopelite-rich units	74	6.4	121	39	603	2.84	2276
Е	Pelite-rich units	65	9.1	108	52	543	2.89	34
SM	Psammite & psammopelite-rich units	71	5.4	110	39	521	2.98	6901
SE	Psammite & pelite-rich units	61	5.2	94	33	514	2.81	1792
EM	Psammopelite & pelite-rich units	70	7.2	116	42	572	2.89	13301
F	Composite gneiss and migmatite	53	5.3	89	34	431	2.87	3077
В	Quartzo-feldspathic gneisses	78	4.4	121	41	589	2.77	3745
р	Pegmatite	59	5.9	106	46	485	2.61	4404
L	Feldspar & quartz-rich rocks +/- pegmatite	76	5.9	115	36	470	2.37	6339
PI	Plagioclase & quartz-rich rocks	46	3.4	74	29	369	2.50	964
а	Amphibolites and basic granulites	73	7.0	136	53	782	3.65	3466
с	Calc-silicate rocks	73	10.0	158	53	555	2.87	125
q	Massive quartz and/or quartz-rich rocks	85	5.3	125	46	493	3.06	147
qg	Quartz-gahnite rocks	117	8.4	196	42	708	3.08	106
gq	Garnet-rich rocks	94	8.0	158	61	638	3.71	37
rm	Retrograde micaceous schists	72	6.4	116	39	558	2.99	4172
G	Post folding granite intrusives	54	4.8	83	31	421	2.57	892
Cz	Cenozoic cover	51	4.7	93	37	526	2.57	42939
	All Rock Types	61	5.5	104	39	535	2.72	95939

Data presented are median values for each rock type. Each point was assigned from the appropriate 1:25000 Geology Sheet

Regional Scale Data Treatment and Presentation

- To avoid biasing statistical analyses and creation of "false" anomalies, all infill was removed to produce a regular 40 x 400 or 20 x 200m grid
- Multiple normalisation regimes have been trialled, including to stratigraphy, rock type, cover vs outcrop and Mn and Fe concentrations
- Data density allows production of high contrast contour plots for each element
- Additive ratio plots are useful for displaying major anomalies and structural features of the dataset
- Ratio of Zn + 2Pb + 10As found to be particularly useful

Normalisation to Rock Type

Raw Pb+Zn Data

Rock Type Normalised Pb+Zn Data

Anthropogenic Features in the Dataset

- Contamination from historic mining activities form the largest anomalies in the CBH dataset for Pb, Zn, Mn and As
- Biggest anomalies in the dataset to the east and southeast of the Line of Lode; probably due to prevailing wind direction
- Highest values closest to Broken Hill; median values >600ppm for Pb and >1000ppm for Zn.
- Strong circular feature ("rail" anomaly) 2 km west of Broken Hill also due historic ore treatment activities
- Using deeper soil samples may be solution in these areas yet to be tested

FP-XRF Regional Scale Features - Pb

FP-XRF Regional Scale Features - Zn

FP-XRF Regional Scale Features - As

FP-XRF Regional Scale Features - Mn

FP-XRF Regional Scale Features - Fe

FP-XRF Regional Scale Features - Rb

FP-XRF Regional Scale Features - Sr

Potential Further Work

- Integration of PEM and CBH datasets potential for regional scale FP-XRF geochemistry maps
- Implementation / improvement of levelling and standardisation regimes to improve usability
- Study of regolith controls on FP-XRF responses
- Close-spaced orientation surveys, identification of characteristic responses for BH-type deposits
- Integration of FP-XRF datasets with other exploration data

Acknowledgements

- CBH Resources Ltd, Perilya Limited and Silver City Mining Ltd (and their JV partners) are thanked for permission to present this work
- Much of this work is derived from Broken Hill Regional Assessment Program conducted by the former CBH Resources exploration team – in particular J. Brigden, G. Jones and J. Randell
- Brian Casey and his team in Broken Hill spent several years and walked immense distances collecting the data presented